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SUMMARY 

A finite element solution is developed for a penalty function formulation of the equations which govern the 
steady motion of a Newtonian fluid through a pipe that rotates about an axis not parallel to its own. The 
motion in this system is driven by the Coriolis acceleration, which has components in the axial direction as 
well as in the transverse plane of the pipe. The relative magnitudes of these components significantly affect the 
qualitative and quantitative nature of the primary and secondary flow field. The present results compare 
favourably with those of previously reported experimental and theoretical studies over a wide range of flow 
regimes. 
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INTRODUCTION 

Low Reynolds number tubular heat and mass exchange devices are of great importance to the 
automobile, aerospace, chemical process and medical device industries. One method of enhancing 
the transport efficiency of such devices is via the superposition of laminar secondary circulations 
upon the primary velocity distribution. The resulting transverse velocity components lead to fluid 
mixing and hence augmented transport within the tubular lumen. As an example, the often studied 
problem of transport in helically coiled tubes uses centrifugal accelerations to achieve increased 
rates of heat and mass transfer. Alternative methods of promoting viscous cross-sectional fluid 
mixing include the use of flow obstructions such as baffles and screens, oscillating systems' and 
rotating  device^.^,^ 

In many applications, however, design limitations preclude the use of these established transport 
enhancement techniques. For example, a clinically practical extracorporeal tubular blood 
oxygenator might require several thousand tubes in parallel. Thus, an oxygenator consisting of 
coiled tubes would be of limited utility, owing to its low packing density and correspondingly high 
priming volume. Recently, Berman and M o ~ k r o s ~ - ~  have proposed the use of rotating non-aligned 
straight tubes as a method of improving mass transfer in low Reynolds number tubular devices. 
This new technique consists of a straight tube that rotates about an axis not parallel to its own. 
Secondary motions appear in the cross-section of the tube as a result of the Coriolis acceleration 
which arises with rotation. These secondary motions are qualitatively similar to those that appear 
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in helically coiled tubes as a result of the centrifugal acceleration and identical to those which 
develop in a straight tube rotating about an axis perpendicular to its own. 

Berman and Mockros6 have demonstrated, both theoretically and experimentally, that a very 
small non-alignment of the tube (with respect to the axis of rotation), in the presence of sufficiently 
rapid angular motion, can lead to significant mass transfer enhancement relative to a stationary 
straight tube. This result suggests that exchange units incorporating this technique can be 
fabricated by slightly twisting a bank of parallel straight tubes, constrained between two common 
headers, and rotating the bank about its original longitudinal axis. With appropriate angular 
velocities such devices can exhibit the transport advantages of coiled tubes coupled with the design 
advantages of straight tube units. 

A theoretical description of heat or mass transfer into fluids flowing steadily through a rotating 
non-aligned straight tube requires an accurate solution of the governing Navier-Stokes equation. 
The literature contains approximations to this solution that are valid for either small or large 
Coriolis disturbances. Berman and Mockros' have developed a third-order regular perturbation 
approximation of the primary and secondary flow fields, in a rotating non-aligned straight tube, 
which is valid only for sufficiently small Coriolis accelerations. Their analysis is an extension of 
Barua's' study of flow through a straight pipe that rotates about an axis perpendicular to its own. 
Benton' used similar techniques to characterize the motion of a fluid flowing through a straight 
pipe subject to the weak Coriolis effects of the earth's rotation. The primary result of these studies 
has been to demonstrate that the flow fields which arise when a straight pipe is 'slowly' rotated 
about an axis that is not parallel to its own are very similar to those that occur in low Dean number 
flow through coiled tubes of negligible coil ratio. Thus, flow in the transverse plane of the tube 
consists of a weak double-vortex secondary flow which, under appropriate conditions, can 
significantly distort the axial velocity distribution. 

In the limit of small Coriolis accelerations the primary and secondary velocity distributions 
depend on the values of two fluid mechanical parameters. The first of these parameters, N i ,  
represents the square of the ratio of Coriolis to viscous forces and is analogous to the coil ratio in 
the coiled tube problem. This parameter is defined as 

N : = [  4Ra2sina 1 ,  
in which a is the radius of the tube, R is its angular velocity, v is the kinematic viscosity of the 
flowing fluid and ci is the angle of non-alignment of the tube (defined in Figure 1). The second 
parameter, ReN, ,  is the product of the square root of the first parameter and the axial Reynolds 
number: 

2a W 
R e  = -, 

V 

in which W is the average axial velocity in the cross-section of the tube. This parameter is similar to 
the Dean number. Berman and Mockros' estimate that their solution is valid for N ,  5 40 and 
ReNA 5 780. (Note that Berman and Mockros' used a slightly different scaling factor in their 
solution. Instead of NA they used N ,  in which N ,  = 192N,.)  

Mori and Nakayama' used a boundary layer analysis to study momentum and heat transfer in 
rotating straight pipes for R e / N ,  >> 1 and R e N ,  >> 1. Their approximate theoretical results, 
however, fail to accurately predict experimental head loss measurements. Ito and Nanbu" 
developed an alternative solution to the same problem. Their theoretical results are in good 
qualitative agreement with their friction drop measurements for R e / N ,  > 2. Mansour" used a 
computer to extend the series solution for a slowly rotating pipe in terms of a single similarity 
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parameter of the form ReN,.  This solution was said to be valid for all values of R e N ,  in the limit 
NA -0. Furthermore, the friction ratio in a slowly rotating pipe was found to grow asymptotically 
as the 1/8 power of R e N ,  and not as the 1/4 power, as was reported by Tto and Nanbu." 
Mansour" suggests that one explanation for this discrepancy may be due to a bifurcation of the 
solution at large values of ReN,.  

Benton and Boyer12 investigated flow in a rotating pipeof arbitrary cross-section in the limit of 
rapid rotation, NA >> 1, and small axial velocities, R e / N ,  << 1. Their results indicate that the flow 
consists of a viscous boundary layer surrounding an inviscid core. They concluded that the flow in 
the interior of the pipe is geostrophic and that inertial effects may be neglected everywhere. Ito and 
Nanbu" studied the same problem for a circular geometry, and they present results that are in 
good agreement with those of Benton and Boyer." 

Several investigators have employed numerical methods to solve this problem in flow regimes 
not accessible to analytical techniques. DuckI3 developed a numerical solution, using a Fourier 
decomposition, for flow through a rotating straight pipe of circular cross-section. These results, 
however, are valid only for a small range of the governing parameters. Speziale14 used finite 
difference techniques to study flow through rotating ducts of rectangular cross-section for 
moderate to relatively rapid rotation rates. He demonstrated that, as the rotation rate is increased, 
for a duct with an aspect ratio of two the secondary flow splits from a symmetric system of two 
counter-rotating vortices into an asymmetric system of four counter-rotating vortices. As NA is 
further increased, the secondary flow restabilizes to a distorted vortex pair and the axial 
distribution assumes a Taylor-Proudman configuration. Recently, Kheshgi and Scriven' have 
solved the same problem, for a square duct, using the penalty/Galerkin/finite element method. 
Their results show that the two-vortex solution bifurcates into a four-vortex solution as R e / N ,  is 
increased for fixed values of NA >> 1. These two additional vortices, however, appear on the 
opposite side of the channel from where Speziale14 predicts that they should arise. 

All of these previously reported analytical studies are valid only for flow regimes that are driven 
either by very small or very large Coriolis accelerations. The non-linearity of the governing system 
of coupled partial differential equations precludes the use of analytical techniques to describe the 
fluid motion in intermediate flow regimes. Solutions in these regimes are best approximated using 
numerical techniques. The present work is a finite element analysis of the steady, laminar, fully 
developed flow of an incompressible Newtonian fluid through a rotating non-aligned straight tube 
ofcircular cross-section. To our knowledge this is the first study to use finite element techniques to 
solve this problem. Since this study was completed, a parallel effort by Kheshgi and Scriven" has 
appeared. Kheshgi and Scriven treated the case of a tube of square cross-section. The results of this 
analysis compare favourably with the perturbation solution of Berman and Mockros5 in the limit 
of mild Coriolis disturbances as well as the experimental friction drop measurements of Ito and 
Nanbu" for large Coriolis effects. 

GOVERNING EQUATIONS 

In the current study a Cartesian reference system has been employed. Mapping a curved domain in 
a rectangular system presents little difficulty since the finite element technique enables the use of 
curved elements. The non-inertial co-ordinate system is defined in Figure 1. A Newtonian fluid 
flows steadily through a straight pipe of radius a, that rotates at a constant angular velocity a 
about an axis orientated at  a non-zero angle, a, relative to the centreline of the pipe. In the limiting 
case of a=O" the pipe rotates about an axis parallel to its own, whereas rotation about a 
perpendicular axis is characterized by a non-alignment angle of 90". In general, the tube may be 
displaced a constant distance, R ,  from the axis of rotation. The dimensionless equations that 
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Figure 1. The rotating non-aligned straight tube geometry 

govern the steady motion of a fluid through this system are those which ensure conservation of 
mass and momentum: 

and 

au av -+-=o, 
ax ay (3) 

(4) 

in which P is a modified pressure and u, v and w are x, y and z components of velocity, respectively. 
These variables are non-dimensionalized as follows (an asterisk denotes a dimensional variable): 

(u, u, w) = (u*, v*, w*)a/v, (7) 

Thus, the steady laminar motion of a fluid through a rotating non-aligned straight tube is 
characterized by two dimensionless fluid mechanical parameters. The first of these parameters, N,, 
serves as an angular Reynolds number, whereas the second parameter, G, represents the pressure 
drop across the system. 
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In the limiting case of flow through a straight pipe rotating about an axis that is parallel to its 
own (i.e. for a = 0’) the Coriolis acceleration and hence the secondary motion vanishes. Thus, in 
this limit, the axial velocity profile is a paraboloid with a superimposed solid body rotation. 

The boundary condition at the tube wall, for the non-inertial co-ordinate system, is that of no 
slip: 

(10) 
In addition, the flow is symmetrical about the y axis: 

( 1  1) 

(u, u, w) = 0 at J(x’ + y’) = 1. 

u(x, Y )  = - 4 - x, Y ) ,  u(x, Y )  = 4 - x, Y )  and w(x, Y )  = w( - x, y )  
and in particular 

a0 aw 
’ a n  an 

u = O - = O  and - = O  for x=O. 

Equations (3)-( 12) are sufficient to characterize laminar flow through the system. Owing to the 
symmetry of the flow it is only necessary to obtain the numerical solution for x 2 0. 

FINITE ELEMENT SOLUTION 

The Bubnov-Galerkin method is used to approximate the solution of a penalty function 
formulation of the governing equations. Thus, the incompressible fluid is approximated as a 
slightly compressible one: 

in which A, the constant penalty parameter, is very large. In the light of equation (13) the 
incompressibility condition, i.e. the continuity equation, may be dropped. The success of this 
method relies on choosing an appropriate value for the penalty parameter. The larger the value of 
A, the more the solution is penalized and the closer the incompressibility constraint is satisfied. If 1 
is too large, however, limitations in machine accuracy will lead to the destruction of the solution. In 
the present study a penalty parameter of lo6 is employed in all computations. 

In the finite element representation of the governing conservation equations the same 
interpolation function is used to approximate the behaviour of each of the three dependent 
variables. In the current approach nine-noded Lagrangian quadratic or second-order complete 
interpolation functions are employed over the isoparametric element domain. The use of the nine- 
noded element has been reported by Huyakorn et u1.,l6 Bercovier and Engleman” and Bar 
Yoseph et uZ.,18 to increase the smoothness and accuracy of convective flow solutions. 

Specification of the interpolating functions leads to implementation of the Bubnov-Galerkin 
weighted residual criteria. This involves substitution of the interpolating functions into the 
penalized governing conservation equations, weighting each term by these functions and then 
integrating over the element area. The boundary conditions are invoked via the application of 
Green’s theorem on the second-order terms, which also serves to reduce the order of the governing 
equations. The resulting equations are 

P = - 1 p . q  (13) 

x-component: 
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y-component: 

z-component: 

jDe ( U- '"'I + U L  w i }  [Nk] dD' 
ax aY 

= 4G ID= [ Nk] dD'. 

This set ofequations corresponds to the kth node of the element. The integration is over the i nodes 
adjoining this kth node. The symbol { } denotes a column vector, whereas [Nil  signifies a row 
vector containing the interpolating polynomials. 

Assembly of the element integral equations (14)-(16), results in a global sparse banded matrix 
equation. A 'reduced' Gaussian integration of order 2 x 2 is used for the penalty terms associated 
with the nine-node Lagrangian element. All other terms in the global matrix equation are 
evaluated using an 'exact' 3 x 3 integration order. The global matrix represents a system of 
simultaneous non-linear algebraic equations. The solution of this system is obtained using a 
modified version of the quadratically converging Newton-Raphson scheme. In order to reduce 
computational time the Jacobian matrix, in the modified method, is re-evaluated periodically 
rather than during every iteration. The specific details of the techniques employed in the present 
study are described by Noronha." 

RESULTS 

All computations are performed in double precision on the University of Kentucky's 
IBM 3083 computer. The solution domain is divided into 51 elements, resulting in a total of 687 
degrees of freedom (three per node). Further mesh refinement is not possible, owing to a limited 
core capacity of 2048 Kbytes. The basic mesh pattern consists of thirteen rays of unequally spaced 
nodes. The radial and tangential spacings are determined by the anticipated solution. A tighter 
packing is maintained near areas exhibiting steep velocity gradients, such as the central vortex 
region, whereas a coarser refinement is afforded near the line of symmetry for most of the results 
presented here. The numerical results are independent of the mesh pattern as long as rapidly 
changing regions are approximated with a sufficiently fine mesh. 
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As noted, previous studies have found that the laminar motion of a viscous fluid through a 
rotating non-aligned straight tube is characterized by the values of two dimensionless parameters: 
N :  and ReN, .  In the current study, however, the governing equations are formulated in terms of 
N A ,  an angular Reynolds number, and G,  the dimensionless pressure drop across a length of pipe. 
In the limit of small Coriolis disturbances Berman and Mockros' have derived the following 
relationship between Re, the conventional axial Reynolds number, and G: 

G2 + +]. 1 -( 16,515,072 9216 

Equation (17) is used in conjunction with the perturbation approximation of Berman and 
Mockros' as the initial guess required for the Newton-Raphson scheme in the present numerical 
study. Since this approximation is probably not valid for NA 2 40 and R e N A  2 780 alternative 
guesses have to be supplied in these regions. For example, although the perturbation approxim- 
ation does not provide a very accurate solution for NA = 50 and G = 1, it does provide a reasonable 
initial guess for the numerical solution since these fluid mechanical parameters are close to the 
estimated region of validity of the perturbation solution. In general, initial guesses are provided by 
using G as a continuation parameter for fixed values of NA; solutions for G = 1 ,  however, are 
obtained by using NA as the continuation parameter. For the most part, the continuation 
parameter is increased by less than 100 per cent of its current value; the only exception occurs when 
G is small.-This continuation process results in rapidly convergent solutions. 

The Reynolds number, Re, is plotted in Figure 2 as a function of G ,  the dimensionless axial 
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Figure 2. Reynolds number vs. dimensionless pressure drop. The data points are the numerical results of this 
study (ON,= I ,  A N , = 4 ,  O N , = 3 0 ,  ONA=100, AN,=300  and W N , =  IOOO). The broken lines are the 
theoretical results of Berman and Mockros5 ( -* -NA = 1, ... N ,  = 4,---N, = 30). The solid lines are the empirical 

results of Ito and Nanbu'O 
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pressure drop in a rotating non-aligned straight tube. These results appear as a family of curves, 
with each curve corresponding to a particular angular Reynolds number. Included in this Figure 
are the numerical results of the present study (the data points), the theoretical results of Berman 
and Mockros' (the broken lines) and the relevant empirical results of Ito and Nanbu" (the solid 
curves). The numerical data shown in this Figure pertain to angular Reynolds numbers of 
I ,  4,30,100,300, and 1000, and values of G ranging from 10 to 2000. Figure 2 suggests that a larger 
pressure gradient is required to produce a particular flow through a rotating non-aligned straight 
tube than for a stationary straight tube. This may be explained by the fact that with rotation part of 
the energy which generates the flow is required to drive the secondary motion; the result is a 
reduction in the axial flux. 

Figure 2 also indicates that the flow rates computed in the present study compare favourably 
with the theoretical results of Bernian and Mockros' in the limit of mild Coriolis disturbances and 
the experimental results of Ito and Nanbu" for NA 5 100. The numerical data for NA = 300 and 
NA = 1000 are restricted to G < 1000 and G < 1250, respectively, whereas Ito and Nanbu's 
empirical relationship is valid at these angular Reynolds numbers for G > 1330 and G > 7300, 
respectively. Unfortunately the numerical solution is found to be mesh dependent for NA 2 300 
and G > 1300. Presumably a finer mesh would correct this problem; however, core restrictions 
preclude such numerical experiments. In any event the trend of the numerical data suggests that the 
current solution predicts a greater friction loss than Ito and Nanbu's'' experiments indicate 
for NA = 300, 1000 and G > 700. 

Conclusions regarding the region of agreement between the perturbation and numerical 
solutions can be made by comparing the two solutions on a node by node basis. Table I presents 
such a comparison for flow regimes that fall within or near NA 5 40 and Re NA 5 780, i.e. the 
estimated region of validity of the perturbation solution of Berman and M o c k r o ~ . ~  Included in this 
table are entries for the numerically computed Reynolds number and the percentage two-norm 
difference between the individual velocity components obtained from the perturbation and 
numerical solutions. The percentage two-norm difference is computed from the following 
expression: 

112 f (4i - 4~121 
Percentageerror = li=:,,l -1 x 100 

1 MI2 

in which N is the total number of nodes and 4i and 4: are the numerical and perturbation 

Table I. Percentage error norms between the numerical and perturbation solutions 

Percentage error norms 
NA G Re Re NA U v W Total 

1 
1 
1 
4 
4 
4 

30 
30 
40 

1 
100 
800 

1 
100 
400 

1 
20 

5 

0.99 
99 

770 

99 
370 

18 

0.99 

0.9 

4.40 

0.99 
99 

770 
4 

396 
1480 

27 
540 
176 

4.5 
4.6 
7.5 
4.6 
4.8 

57.1 
14.5 
24.8 
55.1 

1.8 
1.8 
5.6 
1.8 
2.1 

58.9 
14.2 
25.2 
60.7 

0.2 
0.2 
2.1 
0.2 
2.0 

29.3 
3.6 
7.5 

11.7 

0.2 
0.2 
2.1 
0.2 
2.0 

29.3 
3.8 
7.8 

12.9 
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solutions, respectively, of velocity component at node i. In addition the total percentage 
two-norm difference has been computed, which contains information regarding all of the degrees 
of freedom. 

The results presented in Table I indicate that in some flow regimes the numerical and 
perturbation approximations of the axial velocity distribution are in agreement, even though 
the corresponding approximations for the transverse profiles differ significantly. This point is 
particularly evident in the case of N ,  = 30 and G = 20, where the average pointwise difference 
between the numerical and perturbation axial distributions is only 7.5 percent even though the 
difference for each of the transverse profiles is approximately 25 per cent. This occurs despite 
the fact that the three components of the equations of motion are solved simultaneously. 

An explanation of these differences concerns the relative strengths of the primary and secondary 
velocity components. In the absence of thecoriolis disturbance the axial flow field in a stationary 
straight pipe appears as a paraboloid. As the Coriolis acceleration is introduced this paraboloid 
distorts due to the secondary motion. In the limit of mild Coriolis effects, however, the axial profile 
is essentially unaffected by the relatively weak transverse flow field. Thus, differences between the 
secondary velocity fields predicted by the numerical and perturbation approximations will not 
necessarily be manifested as a difference in the axial velocity component even though the three 
components are coupled. Therefore, as indicated in Table I, the average total difference between 
the two approximations is essentially a reflection of the close agreement between the predicted 
axial profiles and not the significant differences between the predicted secondary behaviours. 

Berman and Mockros5 argue that their perturbation approximation will not give accurate 
results for flow regimes in which N ,  40 and R e N ,  3 780. This argument is based on an order of 
magnitude analysis of the individual terms of the velocity field expansions rather than a 
comparison with experimental data or other theoretical solutions. The results of the present 
numerical study, which presumably has wider range of applicability than the perturbation 
approximation, confirm this argument and imply that the overall region of validity of the 
approximation is slightly narrower than the original estimate of Berman and M o c k r o ~ . ~  This 
estimate does, however, provide a fair description of the region of validity of the axial component of 
the approximation for reasons discussed above. 

The present investigation provides information concerning the primary and secondary flow 
fields that arise as a result of weak to moderately strong Coriolis disturbances. This information, 
for the most part, is not available from the analyses of Berman and Mockros' or Ito and Nanbu." 
Numerical solutions have been obtained for the flow regimes that have been presented in Figure 2. 
These solutions are characterized by the strength of the Coriolis acceleration. 

The Coriolis acceleration has components in both the y and z co-ordinate directions (see 
Figure 1). In the case of positive rotation the y component, which is proportional to the axial 
velocity, is directed radially outwards, resulting in the outward acceleration of fluid along the line 
of symmetry. This is always true for flow in the positive axial direction. Continuity ensures that the 
outwardly streaming fluid will eventually return, in the negative y direction, along the wall of the 
pipe. Thus, the y component of the Coriolis acceleration, which is proportional to ReN,, serves to 
drive the secondary motion in the cross-section of the tube. These transverse circulations, in turn, 
tend to push or skew the axial velocity profile radially outwards away from the axis of rotation. 

The z component of the Coriolis acceleration (refer to equation (6)) is proportional to the 
negative of the y component of velocity. Near the axis of symmetry the y component of velocity is 
positive; therefore, the axial component of the Coriolis acceleration will be directed in the negative 
z direction. In the region near the wall of the tube, removed from the line of symmetry, the fluid is 
returning in the negative y direction, and hence the axial component of the Coriolis acceleration is 
orientated in the positive direction. Thus, the z component of the Coriolis acceleration, which is 
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proportional to N:, tends to retard the axially flowing fluid in the vicinity of the line of symmetry 
and promote the flow in regions located off the centreline. As the axial component of the 
acceleration is increased, the single-peaked axial flow distribution is expected to flatten out along 
the lateral axis and eventually split into a symmetrical double-peaked hill with each peak residing 
in one half cross-section of the tube. 

Axial velocity contours are presented in Figures 3(a-e) for different combinations of the 
governing parameters. The corresponding peak axial velocities, marked with a + ,  are also indicated 
in these Figures. These contours, which are normalized to the maximum axial velocity in the cross- 
section of the tube, have been smoothed with the aid ofthe Surface I1 software package.” The effect 
of the axial component of the Coriolis acceleration on the primary velocity contours is presented in 
Figures 3(a) and 3(b). The contours of Figure 3(a) (N: = 900 and R e N ,  = 27) are the product of a 
relatively mild Coriolis disturbance. As a result they are essentially axisymmetric and very similar 
to the parabolic velocity distribution characteristic of Hagen-Poiseuille flow. Figure 3(b) 
(N: = 90,000 and R e N ,  = 150) illustrates the effect of a two order of magnitude increase in the 
axial component of the Coriolis acceleration. Selectively increasingly this component of the 
acceleration leads to distortion of the single-peaked axisymmetric profile depicted in Figure 3(a). 
The distribution has stretched along the lateral axis of the cross-section. Thus, the axial velocity 
distribution has evolved into a symmetric, double-peaked hill with each peak lying roughly on the 
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Figure 3. Normalized axial velocity contours: (a) N f ,  = 900, R e N ,  = 27 and wmaX = 0.851; (b) N f ,  = 90,000, 
R e N ,  = 150 and w,,, = 0.369; (c) N f ,  = 900, R e N ,  = 16,300 and w,,, = 479; (d) N i  = 10,000, R e N ,  = 6900 
and w,,, = 53.6; (e) N :  = 10,000, R e N ,  = 40,400 and w,,, = 342 
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lateral axis of the tube and close to the wall. The region near this wall is characterized by very steep 
velocity gradients. In the core, i.e. between the peaks, the axial velocity distribution is essentially 
uniform. This is similar to what Kheshgi and Scriven15 found in square ducts for small Rossby and 
Ekman numbers. 

Figures 3(a) and 3(b) confirm that the qualitative nature of the axial velocity distribution in a 
rotating non-aligned straight tube is significantly affected by the magnitude of the axial component 
of the Coriolis disturbance, i.e. N:. Increasing this component tends to decelerate or retard the 
axially flowing fluid in the vicinity of the axis of symmetry and promote or accelerate its flow near 
the lateral walls of the tube. Thus, increasing N: while maintaining a relatively mild transverse 
component, i.e. ReN,, tends to blunt the single-peaked axisymmetric paraboloid characteristic of 
Hagen-Poiseuille flow, and eventually split it into a symmetric double-peaked hill. As this occurs a 
boundary layer region develops near the lateral boundaries of the tube. The thickness of the 
boundary layer decreases as N: increases. 

Figures 3(a) and 3(c) illustrate the effect of the transverse component of the Coriolis acceleration 
on the primary velocity distribution for flow regimes characterized by a relatively mild axial 
component. Figure 3(c) ( N :  = 900 and R e N ,  = 16,300) represents slightly more than a one and a 
half order of magnitude increase in the transverse component of the Coriolis disturbance relative to 
the contours illustrated in Figure 3(a). These results indicate that, as R e N ,  is increased, the axial 
velocity profile skews, along the axis of symmetry and away from the axis of rotation, toward the 
wall 8 = 90". As this occurs a boundary layer region develops near the outer wall of the tube. This 
skewing is a direct consequence of secondary fluid motion which pushes the distribution radially 
outwards along the axis of symmetry. Since the secondary motion is driven by the transverse 
component of the Coriolis acceleration it is expected that the skewing effect should increase with 
ReN,; this pattern is illustrated in Figures 3(a) and 3(c). 

The axial velocity distributions that have been presented thus far have pertained to flow regimes 
in which both components of the Coriolis acceleration are negligible (Figure 3(a)) or either the axial 
component is dominant (Figure 3(b)) or the transverse component is dominant (Figure 3(c)). 
The relative magnitudes of the transverse and axial components of the Coriolis acceleration are 
characterized by the Rossby number, Re/N, .  A large value of the Rossby number indicates that the 
transverse component of the acceleration is more significant than the axial component, whereas a 
small value indicates that the converse is true. Figures 3(d) ( N :  = 10,000 and R e N ,  = 6900) and 
3(e) ( N ;  = 10,000 and R e N ,  = 40,400) illustrate the effect of increasing the Rossby number, i.e. the 
magnitude of the transverse component, as the axial component is maintained at a constant but 
significant level. 

The contours presented in Figure 3(d) are characterized by Rossby number of 0.7. In this flow 
regime the axial component of the Coriolis acceleration only slightly dominates the transverse 
component, although both components are significant. Thus, the axial flow field exhibits both a 
distortion normal to the axis of symmetry and skewing outwards away from the axis of rotation. 
The point of maximum velocity is displaced from both the lateral and symmetry axes of the tube. 
The contours of Figure 3(e), on the other hand, are characterized by a Rossby number of 4. This 
flow regime is dominated by the transverse component of the Coriolis acceleration; it exhibits a 
single peak which lies on the axis of symmetry near the outer wall of the tube. Furthermore, it is 
seen that the axial velocity varies linearly across the core and very little from top to bottom. Keshgi 
and Scriven" noted similar behaviour for a rotating square conduit. The effect of the axial 
component of the Coriolis acceleration is not discernible for relatively high Rossby number flows. 
A summary of the fluid mechnical parameters relevant to Figures 3(a)-3(e) is presented in Table 11. 

In addition to the primary flow field the numerical solution enables an analysis of the transverse 
flow field. Transverse flow fields, corresponding to the axial contours of Figure 3, are depicted in 
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Table 11. Summary of Figures 

NA G Re N f ,  R e N ,  Figures 

30 1 0.9 900 27 0.03 3(ab 4(a) 
30 800 542 900 16,300 18.1 3(c),4(c) 

100 100 69 10, Ooo 6900 0.7 3k-b 4@) 
100 700 404 10,000 40,400 4.0 3(e), 4(e) 
300 1 0.5 90,000 150 0.002 3 m  4(b) 

Figure 4. Normalized transverse velocity vectors: (a) Nf4 = 900, R e N ,  = 27, u,,, = - 0.0626 and u,,, 
= 0.1 16; (b) N i  = 90,000, R e N ,  = 150, u,,, = - 0.0518 and umai = - 0.0987; (c) N i  = 900, R e N ,  = 16,300, 
u,,, = - 15.6 and umax = - 27.8; (d) N f ,  = 10,000, R e N ,  = 6900, u,,, = - 7.06 and u,,, = - 11.6; (e) N f ,  
= 10,000, R e N ,  = 40,400, umar = 22.6 and u,,, = - 41.6 

Figures 4(a)-(e) along with maximum u and u components of velocity. Each arrow in these Figures 
represents the resultant vector at a node normalized to the maximum resultant velocity vector in 
the particular flow field. Hence, the length of each arrow is a gauge of the magnitude of the resultant 
secondary velocity at that node relative to the other nodes in the flow domain. 

The secondary velocity field presented in Figure 4(a) corresponds to the primary velocity field of 
Figure 3(a); it pertains to a flow regime driven by a relatively mild Coriolis acceleration. Thus, the 
secondary circulations are essentially symmetric with respect to the lateral axis of the tube with the 
centre of vortex motion lying somewhat closer to the axis of symmetry than the upper wall of the 
tube. Increasing the axial component of the Coriolis acceleration shifts the centre of vortex motion 
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along the lateral axis of the tube toward the upper wall. This effect is illustrated in Figure 4(b), 
which corresponds to the axial distribution of Figure 3(b). The secondary flow is approximately 
uniform and of mild intensity over much of the half cross-section. Near the lateral wall of the tube, 
however, the fluid must flow through the tight region between the centre of vortex activity and the 
wall. As a result, the velocities are most intense in this area. Overall, however, the secondary motion 
is fairly mild within the cross-section, since the transverse component of the Coriolis acceleration is 
very small. Thse results are qualitatively similar to those found by Keshgi and Scriven15 for a 
square tube. 

A few comments are appropriate concerning what appears to be a reversal of flow, in the corners, 
along the axis of symmetry in Figure 4(b) (as well as in the Figures that follow). The studies of 
SpezialeI4 and Keshgi and Scriven'' demonstrate that the double-vortex secondary flow in a 
rotating tube of rectangular cross-section splits into an asymmetric set of four counter-rotating 
vortices as the rotation rate is increased. This effect, which is known to occur in curved tubes, is 
attributed to a bifurcation of the solution. We feel that the flow reversals, evident in the corners of 
Figure 3(b), are a result of numerical artefact and, thus, do not suggest the appearance of an 
additional pair of vortices. 

First, flow reversals are evident in both corners of Figure 4(b). Although Speziale14 and Keshgi 
and Scriven' disagree on the side of the channel in which the additional vortex pair arises, there is 
no evidence that suggests the development of vortices in both corners of the flow domain. This is 
also true of numerical studies of curved tube geometries. Thus, if Figure 4(b) shows an additional 
vortex pair on the right side of the channel then the flow reversal in the left corner probably 
represents a numerical artefact or vice versa. Secondly, many of the solutions presented in Figure 4 
have been recalculated using more elements along the axis of symmetry. None of these recalculated 
solutions lead to the disappearance of the flow reversals. Further investigation along these lines is 
limited by the available computer facilities. Finally, it is widely believed that the appearance of an 
additional vortex pair represents a bifurcation of the solution. This implies that two or more 
solutions are possible for one set of parameters. As stated previously our solutions are obtained by 
slightly incrementing the value of a continuation parameter and in all cases the resulting solutions 
rapidly converge. Studies concerning rotating and curved tubes report bifurcation of the solution 
when the continuation parameter is increased more than slightly. In addition, the bifurcation point 
is not characterized by a rapidly convergent solution. Thus, we believe that our results represent 
two-vortex solutions of the problem. 

In theory the investigation of solution bifurcation is possible with the present code. In practice, 
however, many more elements are required. For example, Keshgi and Scriven15 used a minimum of 
441 nodes in their investigation of solution bifurcation in a rotating square cavity. Owing to 
storage capacity we were limited to a maximum of approximately 229 nodes, thus precluding an 
accurate study of bifurcation. 

Figure 4(c) illustrates the effect, on the secondary fluid motion, of an increase in the transverse 
component of the Coriolis acceleration while the axial component is maintained at  a low level; this 
profile corresponds to the axial distribution of Figure 3(c). As the transverse component is 
selectively increased the centre of vortex motion tends to shift, along the lateral axis of the tube, 
toward the upper wall. Finally, as both components of the Coriolis acceleration are increased, the 
centre of vortex motion shifts towards the upper wall of the tube and toward the axis of rotation. 
These effects are presented in Figure 4(e), which corresponds to Figure 3(e). 

CONCLUSIONS 

Through the use of finite element techniques it is possible to obtain solutions to a penalty function 
formulation of the equations which govern the laminar, fully developed, steady motion of a 
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Newtonian fluid through a rotating non-aligned straight tube. These results, which cover a wide 
range of flow regimes, compare favourably with the perturbation solution of Berman and 
Mockros5 in the limit of mild Coriolis disturbances, and the experimental pressure drop 
measurements of Ito and Nanbu” for more intense accelerations. It appears that the qualitative 
and quantitative natures of the primary and secondary flow distributions depend on the relative 
magnitudes of the axial and transverse components of the Coriolis acceleration. These components 
are proportional to N i  and ReN,, respectively. 

Furthermore, it should be mentioned that the flow fields which arise in a rotating non-aligned 
straight tube as a result of the Coriolis acceleration are qualitatively very similar to those which 
develop in coiled tubes, as a result of the centrifugal disturbance. In fact the parameters necessary 
to describe the motion of a fluid through a rotating non-aligned straight tube, N i  and ReN,, are 
analogous to the coil ratio and Dean number, respectively, in the coiled tube problem. Since the 
cylindrical geometry of a straight tube is easier to study than the toroidal-like geometry typically 
used to characterize coiled tubes, we feel that the present study can provide valuable insight into 
the more complicated coiled tube problem. 

Extending our present penalty/Galerkin/finite element solution to include solution bifurcation 
is possible in theory but difficult in practice. Many additional elements would be necessary 
accurately to approximate the solution. The current work already uses most of the available space 
on our IBM 3083 computer. Thus, the advantage of the penalty/Galerkin/finite element method 
over more traditional finite difference schemes is questionable-at least for two-dimensional 
problems requiring fairly fine grids. 
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